267 research outputs found

    Effective interactions between inclusions in complex fluids driven out of equilibrium

    Full text link
    The concept of fluctuation-induced effective interactions is extended to systems driven out of equilibrium. We compute the forces experienced by macroscopic objects immersed in a soft material driven by external shaking sources. We show that, in contrast with equilibrium Casimir forces induced by thermal fluctuations, their sign, range and amplitude depends on specifics of the shaking and can thus be tuned. We also comment upon the dispersion of these shaking-induced forces, and discuss their potential application to phase ordering in soft-materials.Comment: 10 pages, 8 figures, to appear in PR

    Transverse fluctuations of grafted polymers

    Full text link
    We study the statistical mechanics of grafted polymers of arbitrary stiffness in a two-dimensional embedding space with Monte Carlo simulations. The probability distribution function of the free end is found to be highly anisotropic and non-Gaussian for typical semiflexible polymers. The reduced distribution in the transverse direction, a Gaussian in the stiff and flexible limits, shows a double peak structure at intermediate stiffnesses. We also explore the response to a transverse force applied at the polymer free end. We identify F-Actin as an ideal benchmark for the effects discussed.Comment: 10 pages, 4 figures, submitted to Physical Review

    Self-organization and Mechanical Properties of Active Filament Bundles

    Full text link
    A phenomenological description for active bundles of polar filaments is presented. The activity of the bundle results from crosslinks, that induce relative displacements between the aligned filaments. Our generic description is based on momentum conservation within the bundle. By specifying the internal forces, a simple minimal model for the bundle dynamics is obtained, capturing generic dynamic behaviors. In particular, contracted states as well as solitary and oscillatory waves appear through dynamic instabilities. The introduction of filament adhesion leads to self-organized persistent filament transport. Furthermore, calculating the tension, homogeneous bundles are shown to be able to actively contract and to perform work against external forces. Our description is motivated by dynamic phenomena in the cytoskeleton and could apply to stress-fibers and self-organization phenomena during cell-locomotion.Comment: 19 pages, 10 figure

    Structure formation in active networks

    Full text link
    Structure formation and constant reorganization of the actin cytoskeleton are key requirements for the function of living cells. Here we show that a minimal reconstituted system consisting of actin filaments, crosslinking molecules and molecular-motor filaments exhibits a generic mechanism of structure formation, characterized by a broad distribution of cluster sizes. We demonstrate that the growth of the structures depends on the intricate balance between crosslinker-induced stabilization and simultaneous destabilization by molecular motors, a mechanism analogous to nucleation and growth in passive systems. We also show that the intricate interplay between force generation, coarsening and connectivity is responsible for the highly dynamic process of structure formation in this heterogeneous active gel, and that these competing mechanisms result in anomalous transport, reminiscent of intracellular dynamics

    Patterning of wound-induced intercellular Ca2+ flashes in a developing epithelium

    Get PDF
    Differential mechanical force distributions are increasingly recognized to provide important feedback into the control of an organ's final size and shape. As a second messenger that integrates and relays mechanical information to the cell, calcium ions (Ca2+) are a prime candidate for providing important information on both the overall mechanical state of the tissue and resulting behavior at the individual-cell level during development. Still, how the spatiotemporal properties of Ca2+ transients reflect the underlying mechanical characteristics of tissues is still poorly understood. Here we use an established model system of an epithelial tissue, the Drosophila wing imaginal disc, to investigate how tissue properties impact the propagation of Ca2+ transients induced by laser ablation. The resulting intercellular Ca2+ flash is found to be mediated by inositol 1,4,5-trisphosphate and depends on gap junction communication. Further, we find that intercellular Ca2+ transients show spatially non-uniform characteristics across the proximal–distal axis of the larval wing imaginal disc, which exhibit a gradient in cell size and anisotropy. A computational model of Ca2+ transients is employed to identify the principle factors explaining the spatiotemporal patterning dynamics of intercellular Ca2+ flashes. The relative Ca2+ flash anisotropy is principally explained by local cell shape anisotropy. Further, Ca2+ velocities are relatively uniform throughout the wing disc, irrespective of cell size or anisotropy. This can be explained by the opposing effects of cell diameter and cell elongation on intercellular Ca2+ propagation. Thus, intercellular Ca2+ transients follow lines of mechanical tension at velocities that are largely independent of tissue heterogeneity and reflect the mechanical state of the underlying tissue

    Detection of Extensive Cross-Neutralization between Pandemic and Seasonal A/H1N1 Influenza Viruses Using a Pseudotype Neutralization Assay

    Get PDF
    BACKGROUND: Cross-immunity between seasonal and pandemic A/H1N1 influenza viruses remains uncertain. In particular, the extent that previous infection or vaccination by seasonal A/H1N1 viruses can elicit protective immunity against pandemic A/H1N1 is unclear. METHODOLOGY/PRINCIPAL FINDINGS: Neutralizing titers against seasonal A/H1N1 (A/Brisbane/59/2007) and against pandemic A/H1N1 (A/California/04/2009) were measured using an HIV-1-based pseudovirus neutralization assay. Using this highly sensitive assay, we found that a large fraction of subjects who had never been exposed to pandemic A/H1N1 express high levels of pandemic A/H1N1 neutralizing titers. A significant correlation was seen between neutralization of pandemic A/H1N1 and neutralization of a standard seasonal A/H1N1 strain. Significantly higher pandemic A/H1N1 neutralizing titers were measured in subjects who had received vaccination against seasonal influenza in 2008-2009. Higher pandemic neutralizing titers were also measured in subjects over 60 years of age. CONCLUSIONS/SIGNIFICANCE: Our findings reveal that the extent of protective cross-immunity between seasonal and pandemic A/H1N1 influenza viruses may be more important than previously estimated. This cross-immunity could provide a possible explanation of the relatively mild profile of the recent influenza pandemic

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation

    Episodic Therapy for Genital Herpes in Sub-Saharan Africa: A Pooled Analysis from Three Randomized Controlled Trials

    Get PDF
    BACKGROUND: A randomized controlled trial in South Africa found a beneficial effect of acyclovir on genital ulcer healing, but no effect was seen in trials in Ghana, Central African Republic and Malawi. The aim of this paper is to assess whether the variation in impact of acyclovir on ulcer healing in these trials can be explained by differences in the characteristics of the study populations. METHODOLOGY/PRINCIPAL FINDINGS: Pooled data were analysed to estimate the impact of acyclovir on the proportion of ulcers healed seven days after randomisation by HIV/CD4 status, ulcer aetiology, size and duration before presentation; and impact on lesional HIV-1. Risk ratios (RR) were estimated using Poisson regression with robust standard errors. Of 1478 patients with genital ulcer, most (63%) had herpetic ulcers (16% first episode HSV-2 ulcers), and a further 3% chancroid, 2% syphilis, 0.7% lymphogranuloma venereum and 31% undetermined aetiology. Over half (58%) of patients were HIV-1 seropositive. The median duration of symptoms before presentation was 6 days. Patients on acyclovir were more likely to have a healed ulcer on day 7 (63% vs 57%, RR = 1.08, 95% CI 0.98-1.18), shorter time to healing (p = 0.04) and less lesional HIV-1 RNA (p = 0.03). Small ulcers (<50 mm(2)), HSV-2 ulcers, first episode HSV-2 ulcers, and ulcers in HIV-1 seropositive individuals responded best but the better effectiveness in South Africa was not explained by differences in these factors. CONCLUSIONS/SIGNIFICANCE: There may be slight benefit in adding acyclovir to syndromic management in settings where most ulcers are genital herpes. The stronger effect among HIV-1 infected individuals suggests that acyclovir may be beneficial for GUD/HIV-1 co-infected patients. The high prevalence in this population highlights that genital ulceration in patients with unknown HIV status provides a potential entry point for provider-initiated HIV testing
    • …
    corecore